Education

xxxxx

16 Sep 2023 | 13 min read | by Dasa

Consider a fluid element referenced in conservation-of-mass.

Linear deformation
The linear deformation of a fluid element is given three elangation components and six shearing components.

Elengation Components

exx=uxe_{xx} = \frac{\partial u}{\partial x}, eyy=vye_{yy} = \frac{\partial v}{\partial y}, and ezz=wze_{zz} = \frac{\partial w}{\partial z}

Shearing components
exy=eyx=12(uy+vx)e_{xy} = e_{yx} = \frac{1}{2} (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}),
eyz=ezy=12(vz+wy)e_{yz} = e_{zy} = \frac{1}{2} (\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}), and
exz=ezx=12(uz+wx)e_{xz} = e_{zx} = \frac{1}{2} (\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x})

Volumetric deformation

The volumetric deformation is given by

ux+vy+wz=div U\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = div \space U

Newton’s law of friction states that the frictional forces (τ\tau) exerted is directly proportional to the velocity (dudu) and inversly proportional to the distance(dydy). The proportionality constant is known as viscosity(μ\mu).

τ=μdudy\tau = \mu \frac{du}{dy}

For Newtonian fluids the rate of deformation is propotional to the viscuss stress and the Newton law of viscosity for compressible flow involves two proportionality constants.

Dynamic viscosity μ\mu related to linear deformation

Second viscosity λ\lambda related to volumetric deformation

The above declarations defines the nine viscous stresses as below

τxx=2μux+λdiv U\tau_{xx} = 2 \mu \frac{\partial u}{\partial x} + \lambda div \space U

τyy=2μvy+λdiv U\tau_{yy} = 2 \mu \frac{\partial v}{\partial y} + \lambda div \space U

τzz=2μwz+λdiv U\tau_{zz} = 2 \mu \frac{\partial w}{\partial z} + \lambda div \space U

τxy=τyx=μ(uy+vx)\tau_{xy} = \tau_{yx} = \mu (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x})

τyz=τzy=μ(vz+wy)\tau_{yz} = \tau_{zy} = \mu (\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y})

τxz=τzx=μ(wx+uz)\tau_{xz} = \tau_{zx} = \mu (\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z})

Stoke’s hypothesis, states that

λ=23μ\lambda = - \frac{2}{3} \mu

So the linear elongation stresses can be re-written as below

τxx=2μux23μ div U\tau_{xx} = 2 \mu \frac{\partial u}{\partial x} - \frac{2}{3} \mu \space div \space U

τyy=2μvy23μ div U\tau_{yy} = 2 \mu \frac{\partial v}{\partial y} - \frac{2}{3} \mu \space div \space U

τzz=2μwz23μ div U\tau_{zz} = 2 \mu \frac{\partial w}{\partial z} - \frac{2}{3} \mu \space div \space U

The below x-momentum equation is taken from Momentum equation and forces.

ρDuDt=(p+τxx)x+(τyx)y+(τzx)z+SMx\begin{aligned} \rho \frac{Du}{Dt} = \frac{\partial (-p + \tau_{xx})}{\partial x} + \frac{\partial (\tau_{yx})}{\partial y} + \frac{\partial (\tau_{zx})}{\partial z} + S_{Mx} \end{aligned}

When we substitute the stress values in the above equation

ρDuDt=px+x[2μux23μ div U]+y[μ(uy+vx)]+z[μ(wx+uz)]+SMx=pxx(23μ div U)+x[μux]+y[μuy]+z[μuz]+x[μux]+y[μvx]+z[μwx]+SMx=pxx(23μ div U)+div(μ grad u)+x[μux]+y[μvx]+z[μwx]+SMx\begin{aligned} \rho \frac{Du}{Dt} &= -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x}[2 \mu \frac{\partial u}{\partial x} - \frac{2}{3} \mu \space div \space U] \\ &+ \frac{\partial}{\partial y} [\mu (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x})] \\ &+ \frac{\partial}{\partial z} [\mu (\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z})]\\ &+ S_{Mx}\\ &= -\frac{\partial p}{\partial x} - \frac{\partial}{\partial x}(\frac{2}{3} \mu \space div \space U)\\ &+ \frac{\partial}{\partial x} [\mu \frac{\partial u}{\partial x}] + \frac{\partial}{\partial y} [\mu \frac{\partial u}{\partial y}] + \frac{\partial}{\partial z} [\mu \frac{\partial u}{\partial z}]\\ &+ \frac{\partial}{\partial x} [\mu \frac{\partial u}{\partial x}] + \frac{\partial}{\partial y} [\mu \frac{\partial v}{\partial x}] + \frac{\partial}{\partial z} [\mu \frac{\partial w}{\partial x}]\\ &+ S_{Mx}\\ &= -\frac{\partial p}{\partial x} - \frac{\partial}{\partial x}(\frac{2}{3} \mu \space div \space U)\\ &+ div(\mu \space grad \space u)\\ &+ \frac{\partial}{\partial x} [\mu \frac{\partial u}{\partial x}] + \frac{\partial}{\partial y} [\mu \frac{\partial v}{\partial x}] + \frac{\partial}{\partial z} [\mu \frac{\partial w}{\partial x}]\\ &+ S_{Mx}\\ \end{aligned}

For incompressible fluid the div u=0div \space u = 0
When the function is set to be continuous in an Open Set, then, x[y]=y[x]\frac{\partial}{\partial x} [\frac{\partial}{\partial y}] = \frac{\partial}{\partial y} [\frac{\partial}{\partial x}]

When we apply the above two conditions, we get

ρDuDt=px+div(μ grad u)+SMx\begin{aligned} \rho \frac{Du}{Dt} &= -\frac{\partial p}{\partial x} + div(\mu \space grad \space u) + S_{Mx} \end{aligned}

Similarly we can write the y-momentum and z-momentum equations as below

ρDvDt=py+div(μ grad v)+SMy\begin{aligned} \rho \frac{Dv}{Dt} &= -\frac{\partial p}{\partial y} + div(\mu \space grad \space v) + S_{My} \end{aligned}

ρDwDt=pz+div(μ grad w)+SMz\begin{aligned} \rho \frac{Dw}{Dt} &= -\frac{\partial p}{\partial z} + div(\mu \space grad \space w) + S_{Mz}\\ \end{aligned}

And the Internal Energy Equation can be written as

ρDiDt=p div U+div(k grad T)+Φ+Si\begin{aligned} \rho \frac{Di}{Dt} &= -p \space div \space U + div(k \space grad \space T) + \Phi + S_{i}\\ \end{aligned}

Where, Φ\Phi is the dissipation function and it is a non-negative function, since it consists of squared terms.

Φ=μ{ 2[(ux)2+(vy)2+(wz)2]+(uy+vx)2+(vz+wy)2+(uz+wx)223μ(div U)2 }\begin{aligned} \Phi &= \mu \lbrace \space 2 \lbrack (\frac{\partial u}{\partial x})^2 + (\frac{\partial v}{\partial y})^2 + (\frac{\partial w}{\partial z})^2 \rbrack \\ &+ (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x})^2 + (\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y})^2 + (\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x})^2 \\ & - \frac{2}{3} \mu (div \space U)^2 \space \rbrace \end{aligned}