Consider a fluid element referenced in conservation-of-mass.
Linear deformation
The linear deformation of a fluid element is given three elangation components and six shearing components.
Elengation Components
exx=∂x∂u, eyy=∂y∂v, and ezz=∂z∂w
Shearing components
exy=eyx=21(∂y∂u+∂x∂v),
eyz=ezy=21(∂z∂v+∂y∂w), and
exz=ezx=21(∂z∂u+∂x∂w)
Volumetric deformation
The volumetric deformation is given by
∂x∂u+∂y∂v+∂z∂w=div U
Newton’s law of friction states that the frictional forces (τ) exerted is directly proportional to the velocity (du) and inversly proportional to the distance(dy). The proportionality constant is known as viscosity(μ).
τ=μdydu
For Newtonian fluids the rate of deformation is propotional to the viscuss stress and the Newton law of viscosity for compressible flow involves two proportionality constants.
Dynamic viscosity μ related to linear deformation
Second viscosity λ related to volumetric deformation
The above declarations defines the nine viscous stresses as below
τxx=2μ∂x∂u+λdiv U
τyy=2μ∂y∂v+λdiv U
τzz=2μ∂z∂w+λdiv U
τxy=τyx=μ(∂y∂u+∂x∂v)
τyz=τzy=μ(∂z∂v+∂y∂w)
τxz=τzx=μ(∂x∂w+∂z∂u)
Stoke’s hypothesis, states that
λ=−32μ
So the linear elongation stresses can be re-written as below
τxx=2μ∂x∂u−32μ div U
τyy=2μ∂y∂v−32μ div U
τzz=2μ∂z∂w−32μ div U
The below x-momentum equation is taken from Momentum equation and forces.
ρDtDu=∂x∂(−p+τxx)+∂y∂(τyx)+∂z∂(τzx)+SMx
When we substitute the stress values in the above equation
ρDtDu=−∂x∂p+∂x∂[2μ∂x∂u−32μ div U]+∂y∂[μ(∂y∂u+∂x∂v)]+∂z∂[μ(∂x∂w+∂z∂u)]+SMx=−∂x∂p−∂x∂(32μ div U)+∂x∂[μ∂x∂u]+∂y∂[μ∂y∂u]+∂z∂[μ∂z∂u]+∂x∂[μ∂x∂u]+∂y∂[μ∂x∂v]+∂z∂[μ∂x∂w]+SMx=−∂x∂p−∂x∂(32μ div U)+div(μ grad u)+∂x∂[μ∂x∂u]+∂y∂[μ∂x∂v]+∂z∂[μ∂x∂w]+SMx
For incompressible fluid the div u=0
When the function is set to be continuous in an Open Set, then, ∂x∂[∂y∂]=∂y∂[∂x∂]
When we apply the above two conditions, we get
ρDtDu=−∂x∂p+div(μ grad u)+SMx
Similarly we can write the y-momentum and z-momentum equations as below
ρDtDv=−∂y∂p+div(μ grad v)+SMy
ρDtDw=−∂z∂p+div(μ grad w)+SMz
And the Internal Energy Equation can be written as
ρDtDi=−p div U+div(k grad T)+Φ+Si
Where, Φ is the dissipation function and it is a non-negative function, since it consists of squared terms.
Φ=μ{ 2[(∂x∂u)2+(∂y∂v)2+(∂z∂w)2]+(∂y∂u+∂x∂v)2+(∂z∂v+∂y∂w)2+(∂z∂u+∂x∂w)2−32μ(div U)2 }