Law of Conservation of Momentum and Energy
by Dasa
. 29 Aug 2023
The momentum and energy conservation law states that a fluid property (ϕ \phi ϕ ) following a fluid particle is a function of position (x, y, z) and time. And it experiences two rates of changes viz,
change in property concerning the time (∂ ϕ ∂ t \frac{\partial \phi}{\partial t} ∂ t ∂ ϕ )
change is property concerning the location and movement (∂ ϕ ∂ x d x d t + ∂ ϕ ∂ y d y d t + ∂ ϕ ∂ z d z d t \frac{\partial \phi}{\partial x} \frac{dx}{dt} + \frac{\partial \phi}{\partial y} \frac{dy}{dt} + \frac{\partial \phi}{\partial z} \frac{dz}{dt} ∂ x ∂ ϕ d t d x + ∂ y ∂ ϕ d t d y + ∂ z ∂ ϕ d t d z )
Considering ϕ \phi ϕ is the property per unit mass, then the total derivative of ϕ \phi ϕ (the rate of change of property per unit mass) can be expressed as
D ϕ D t = ∂ ϕ ∂ t + ∂ ϕ ∂ x d x d t + ∂ ϕ ∂ y d y d t + ∂ ϕ ∂ z d z d t \frac{D \phi}{Dt} = \frac{\partial \phi}{\partial t} + \frac{\partial \phi}{\partial x} \frac{dx}{dt} + \frac{\partial \phi}{\partial y} \frac{dy}{dt} + \frac{\partial \phi}{\partial z} \frac{dz}{dt} D t D ϕ = ∂ t ∂ ϕ + ∂ x ∂ ϕ d t d x + ∂ y ∂ ϕ d t d y + ∂ z ∂ ϕ d t d z
The change in x direction concerning time (d x d t \frac{dx}{dt} d t d x ) is velocity u, y direction (d y d t \frac{dy}{dt} d t d y ) is v, and z direction (d z d t \frac{dz}{dt} d t d z ) is w.
D ϕ D t = ∂ ϕ ∂ t + u ∂ ϕ ∂ x + v ∂ ϕ ∂ y + w ∂ ϕ ∂ z \frac{D \phi}{Dt} = \frac{\partial \phi}{\partial t} + u \frac{\partial \phi}{\partial x} + v \frac{\partial \phi}{\partial y} + w \frac{\partial \phi}{\partial z} D t D ϕ = ∂ t ∂ ϕ + u ∂ x ∂ ϕ + v ∂ y ∂ ϕ + w ∂ z ∂ ϕ
Using the Gradient rule and dot product rule (refer divergence rule )
D ϕ D t = ∂ ϕ ∂ t + U . g r a d ϕ \frac{D \phi}{Dt} = \frac{\partial \phi}{\partial t} + U . grad \phi D t D ϕ = ∂ t ∂ ϕ + U . g r a d ϕ
When we multiply the rate of change of property per unit mass (D ϕ D t \frac{D \phi}{Dt} D t D ϕ ) with density (ρ \rho ρ ), we get the rate of change of property per unit volume.
ρ D ϕ D t = ρ ( ∂ ϕ ∂ t + U . g r a d ϕ ) \rho \frac{D \phi}{Dt} = \rho (\frac{\partial \phi}{\partial t} + U . grad \phi) ρ D t D ϕ = ρ ( ∂ t ∂ ϕ + U . g r a d ϕ )
The equation for the conservation of mass for a fluid with a orbitrary conserved property can be written as below (refer Conservation of mass ).
∂ ( ρ ϕ ) ∂ t + d i v ( ρ ϕ U ) \frac{\partial (\rho \phi)}{\partial t} + div(\rho \phi U) ∂ t ∂ ( ρ ϕ ) + d i v ( ρ ϕ U )
Using dot product rule
= ρ ∂ ϕ ∂ t + ϕ ∂ ρ ∂ t + ϕ d i v ( ρ U ) + ρ U . g r a d ϕ = \rho \frac{\partial \phi}{\partial t} + \phi \frac{\partial \rho}{\partial t} + \phi div(\rho U) + \rho U . grad \phi = ρ ∂ t ∂ ϕ + ϕ ∂ t ∂ ρ + ϕ d i v ( ρ U ) + ρ U . g r a d ϕ
= ρ ( ∂ ϕ ∂ t + U . g r a d ϕ ) + ϕ ( ∂ ρ ∂ t + d i v ( ρ U ) ) = \rho (\frac{\partial \phi}{\partial t} + U . grad \phi) + \phi (\frac{\partial \rho}{\partial t} + div(\rho U)) = ρ ( ∂ t ∂ ϕ + U . g r a d ϕ ) + ϕ ( ∂ t ∂ ρ + d i v ( ρ U ) )
The mass conservation law states that ∂ ρ ∂ t + d i v ( ρ U ) \frac{\partial \rho}{\partial t} + div(\rho U) ∂ t ∂ ρ + d i v ( ρ U ) is equal to zero.
= ρ ( ∂ ϕ ∂ t + U . g r a d ϕ ) = \rho (\frac{\partial \phi}{\partial t} + U . grad \phi) = ρ ( ∂ t ∂ ϕ + U . g r a d ϕ )
= ρ D ϕ D t = \rho \frac{D \phi}{Dt} = ρ D t D ϕ
so,
ρ D ϕ D t = ∂ ( ρ ϕ ) ∂ t + d i v ( ρ ϕ U ) \rho \frac{D \phi}{Dt} = \frac{\partial (\rho \phi)}{\partial t} + div(\rho \phi U) ρ D t D ϕ = ∂ t ∂ ( ρ ϕ ) + d i v ( ρ ϕ U )
{ T h e R a t e O f I n c r e a s e O f ϕ f o r a f l u i d p a r t i c l e } = { T h e R a t e O f I n c r e a s e O f ϕ o f f l u i d e l e m e n t } + { N e t r a t e o f f l o w O f ϕ o u t o f f l u i d e l e m e n t } \begin{Bmatrix}
\text{The Rate Of Increase } \\
\text{Of } \phi \text{ for a}\\
\text{fluid particle}
\end{Bmatrix}
=
\begin{Bmatrix}
\text{The Rate Of Increase } \\
\text{Of } \phi \text{ of }\\
\text{fluid element}
\end{Bmatrix}
+
\begin{Bmatrix}
\text{Net rate of flow } \\
\text{Of } \phi \text{ out of }\\
\text{fluid element}
\end{Bmatrix}
⎩ ⎨ ⎧ T h e R a t e O f I n c r e a s e O f ϕ f o r a f l u i d p a r t i c l e ⎭ ⎬ ⎫ = ⎩ ⎨ ⎧ T h e R a t e O f I n c r e a s e O f ϕ o f f l u i d e l e m e n t ⎭ ⎬ ⎫ + ⎩ ⎨ ⎧ N e t r a t e o f f l o w O f ϕ o u t o f f l u i d e l e m e n t ⎭ ⎬ ⎫
Note the terms:
Fluid Particle = Lagrangian form => the fluid particle that is moving with the flow
Fluid Element = Eulerian form => the fluid element that is stationary in space
From the above equation we can construct the three momentum equation and energy equation as below.
Momentum
Notation
LHS
RHS
x-momentum
u
ρ D u D t \rho \frac{Du}{Dt} ρ D t D u
∂ ( ρ u ) ∂ t + d i v ( ρ u U ) \frac{\partial (\rho u)}{\partial t} + div(\rho u U) ∂ t ∂ ( ρ u ) + d i v ( ρ u U )
y-momentum
v
ρ D v D t \rho \frac{Dv}{Dt} ρ D t D v
∂ ( ρ v ) ∂ t + d i v ( ρ v U ) \frac{\partial (\rho v)}{\partial t} + div(\rho v U) ∂ t ∂ ( ρ v ) + d i v ( ρ v U )
z-momentum
w
ρ D w D t \rho \frac{Dw}{Dt} ρ D t D w
∂ ( ρ w ) ∂ t + d i v ( ρ w U ) \frac{\partial (\rho w)}{\partial t} + div(\rho w U) ∂ t ∂ ( ρ w ) + d i v ( ρ w U )
Energy
E
ρ D E D t \rho \frac{DE}{Dt} ρ D t D E
∂ ( ρ E ) ∂ t + d i v ( ρ E U ) \frac{\partial (\rho E)}{\partial t} + div(\rho E U) ∂ t ∂ ( ρ E ) + d i v ( ρ E U )